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Abstract—Cross-Technology Interference (CTI) badly harms
the transmission reliability for low-power networks such as
ZigBee at 2.4GHz band. Though promising, channel hopping still
faces challenges because the increasingly dense deployment of
CTI leaves very few available channels. Selecting a good channel
with the least overhead is crucial but challenging. Most of the
existing works are heuristic methods that choose a channel far
from the current one to avoid adjacent channels that may be
correlatively interfered by CTI with a wider bandwidth such as
WiFi. However, we observe that the correlated channels influ-
enced by the same CTI source do not necessarily have the same
channel qualities and even the opposite state, due to the uneven
spectrum power density of CTI. Such channel opportunities are
unexplored and wasted. In this paper, we propose CoHop, a
quantitative correlation based channel hopping method for low-
power wireless networks. We establish a quantitative model that
describes the correlation of channel qualities to capture channel
opportunities and calculate channel quality without probing, to
reduce probing overhead. We implement CoHop on TinyOS
and evaluate its performance in various environments. The
experimental results show that CoHop can increase the Packet
Reception Ratio (PRR) by 80%, compared with existing methods.

Index Terms—Cross-technology interference, channel hopping,
correlation, low-power, wireless networks.

I. INTRODUCTION

The unlicensed 2.4GHz ISM band embraces various wire-

less technologies, such as WiFi, ZigBee, and Bluetooth. These

wireless technologies are widely used in the emerging Internet

of Things (IoT) applications such as smart homes or intelligent

medical [1]–[3]. When used in the same area, the prosperous

wireless technologies will compete for the shared spectrum

resources, leading to serious Cross-Technology Interference

(CTI). Actually, CTI has become a major factor affecting

communication reliability, especially for low-power networks.

Previous measurement studies [4]–[7] have revealed that Zig-

Bee transmissions are seriously corrupted by the coexisting

high-power WiFi, resulting in decreased communication relia-

bility. Consequently, WiFi interference has become the major

bottleneck to the performance of ZigBee networks.

Channel hopping is a promising way to increase the ro-

bustness against interference. However, widely deployed WiFi

networks make it hard for ZigBee to select an interference-free

channel from 16 ZigBee channels. In case of wrong selection,

a channel must be selected again, which not only makes

the transmission opportunities of available channels lost but

also wastes energy. Existing hopping methods usually select

channels by random, polling probing [8], blacklist technique

[9], [10], far-channel priority [11]. Muzi [8] chooses an

available channel by polling all, which leads to high overhead

and delay. The blacklist technique [9], [10] skips the detection

of low-quality channels to reduce overhead. However, due to

the dynamics, the channels that temporarily experience poor

quality are likely to be blacklisted, making it difficult to fully

capture the channel opportunities. ARCH [11] considers that

performance is correlated across neighboring channels and

therefore selects the spectrally distant channels.

Most of the existing methods ignore the availability of

adjacent channels and just regard all the adjacent channels

experiencing the same CTI that have the same channel state

(busy or idle). However, based on the preliminary study in

Section II, we find that due to the non-uniform spectrum power

density of CTI, correlated channels affected by the same CTI

source do not necessarily have the same channel quality and

may even have the opposite channel state. Such an observa-

tion inspires us to utilize the channel opportunities ignored

before in channel selection to further enhance communication

reliability.

However, exploring such channel opportunities is challeng-

ing. First, there is no existing channel correlation model which

quantitatively considers the channel opportunities caused by

the non-uniform spectrum power density. Due to the asym-

metry of channel bandwidths between WiFi and ZigBee,

without such a quantitative model, it is difficult to capture

these channel opportunities because ZigBee devices can only

detect one channel at a time without knowing the quality of

other channels. Second, how to choose a new channel with

satisfying quality is non-trivial even if we have the quantitative

channel correlation model. Since a WiFi channel (20MHz)

is overlapped a lot with the adjacent and is wider than a

ZigBee channel (5MHz), probing one ZigBee channel usually

cannot accurately recognize the correlation and capture the

available channel opportunities. During the next probing, due

to the bursty and fast WiFi traffic, the interference can be

from other WiFi devices operating on another overlapped

WiFi channel, causing failures of correlation probing and

channel selection. The channel probing sequence thus should978-1-7281-6630-8/20/$31.00 © 2020 IEEE



be elaborately designed to take full advantage of the channel

correlation. Third, channel correlation is dynamic because

the coexisting interference is time-varying. How to detect

the changes of channel correlation and adaptively update the

correlation model should be intelligently designed.

In this paper, focusing on the above three challenges,

we propose CoHop, a novel channel hopping method for

low-power wireless networks that discovers and utilizes the

unexplored channel opportunities on adjacent channels in CTI

environments. The key insight of CoHop is the adjacent chan-

nels of a busy ZigBee channel can have different quality and

even opposite channel state due to the non-uniform spectrum

power density of coexisting WiFi interference. The technical

highlight of CoHop is to select an available channel with

limited probing overhead based on the quantitative correlation.

First, we find the non-uniform power spectrum density of WiFi

interference results in the poor quality of ZigBee channels

near WiFi central frequency but possibly good quality for

ZigBee channels far from the WiFi central frequency. Hence,

we establish a channel correlation model that quantitatively

describes the correlation of qualities among adjacent channels.

Second, a channel selection algorithm is carefully designed to

minimize probing overhead and maximize hopping precision.

To avoid inaccurate probing caused by bursty WiFi traffic,

we design a prediction-based probing method to optimize the

probing sequence. Third, to cope with the channel dynamics,

we design an online updating mechanism for the correlation

model based on the channel probing results obtained during

the channel selection process. The contributions of this work

are summarized as follows.

• We propose CoHop, a new quantitative correlation-based

channel hopping method that accurately captures the

unexplored channel opportunities on adjacent channels of

a busy channel in CTI environments.

• CoHop adaptively selects an available channel based

on quantitative correlation with low overhead and high

precision. The probing sequence is optimized based on

the Pearson Correlation Coefficient and the prediction-

based probing algorithm.

• We implement a prototype of CoHop and evaluate its

performance in controlled environments and real-world

scenarios. The evaluation results show that CoHop can

increase PRR by 80%, compared with existing methods.

The rest of the paper is organized as follows. In Section II,

we propose the quantitative correlation model based on our

observation to motivate this work. We present the design of

CoHop in Section III and the evaluation results in Section

IV. The related works are discussed in Section V. Finally, we

conclude this paper in Section VI.

II. PRELIMINARY STUDY

In this section, we first investigate whether the adjacent

channels of a poor channel have channel opportunities to

transmit reliably. We find that when experiencing the same

WiFi interference, even though the adjacent channels of a poor

channel are noisy, these channels may have opportunities to
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(a) The channel layout of WiFi and ZigBee in 2.4 GHz ISM band

(b) Pearson correlation coefficient among 16 ZigBee channels

Fig. 1. The correlation among 16 channels under controlled WiFi interference.

be reliable for ZigBee transmissions. To capture these channel

opportunities unexplored before, a new quantitative model is

then proposed.

A. Underutilized Noisy Channel

When CTI collides with the ZigBee transmissions, the

strength of interference and noise significantly increases, lead-

ing to a low Signal to Interference plus Noise Ratio (SINR).

Hence, SINR is usually used as an indicator of channel quality.

To investigate whether there exist channel opportunities on

adjacent channels of a busy channel or not, we explore the

relationship between channels. ZigBee channels overlap with

WiFi channels in the 2.4GHz ISM band, as shown in Fig. 1(a).

We deployed three WiFi routers simultaneously transmitting in

WiFi channels 1, 6, and 11 to create CTI and use 16 TelosB

nodes respectively operating on 16 ZigBee channels to collect

Receive Signal Strength (RSS) samples outdoors without any

other interference. And then we calculate the SINR according

to the RSS samples.

To study the relationship among adjacent channels, we adopt

the Pearson Correlation Coefficient (PCC) [12] to measure

the correlation of channel qualities. The PCC between ZigBee

channel i and j is

Ci, j =

n
∑
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Sk
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n
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where Si and S j are SINR sequences calculated by the RSS

samples in ZigBee channel i and j, and n is the length of Si
and S j, which is set to 3 in our experiment. The mean of Si
and S j are respectively denoted as Si and S j. For simplicity,

in this paper, we use notation “Ch. i” to represent “ZigBee

channel i” in short.

The experiment runs for half an hour and the experimental

results are shown in Fig. 1(b). From the results, we can find

that ZigBee channels overlapped with the same WiFi channel



Fig. 2. SINR of ZigBee in Ch. 11-14 under the
interference of WiFi channel 1.

Fig. 3. The probability of available boundary-
channel under WiFi channel 1, 6 and 11.

Fig. 4. The correlation of the SINR and the WiFi
power spectrum.

have a strong correlation. For instance, the PCC between

Ch. 11 and Ch. 12-14 are 0.95, 0.93, 0.79, respectively. But

the PCC between Ch. 11 and other channels are usually in

±0.1. The results are consistent with the existing studies [11],

[13] on the correlation of channel reliability (PRR<90%).

However, existing methods regard the channel availability on

adjacent channels as equivalent and only capture the long-term

statistical correlation.

During our experiments, we find that the adjacent channels

of a busy channel do not necessarily have equivalent channel

quality and may even have reliable channel opportunities.

According to the PRR-SINR model [14], a 6dB SINR is

good enough to reliably decode the ZigBee packets. Hence,

we use 6dB as the threshold, Sth, to judge the channel state

as busy or idle. We plot the SINR of Ch. 11-14 in Fig.

2. From the figure, we find even though Ch. 11-14 suffer

the same WiFi interference, they experience quite different

channel qualities and have even opposite channel states. Even

though the average SINR of Ch. 12 and 13 are -4dB and -3dB

which is too low to transmit, the average SINR of Ch. 11 and

14 are higher than 6dB, leading to the opposite channel states.

The results reveal that the adjacent channels (Ch. 11/14) of a

busy channel (Ch. 12/13) can have transmission opportunities

that are ignored and unexplored by previous methods.

We further measure how often the channel opportunities

exist in the busy channels during our experiment. We calculate

the percentages of the occurrence mentioned above where at

least one adjacent channel of a busy channel influenced by

the same WiFi interference is available, when WiFi operates

in channel 1/6/11. The results are shown in Fig. 3. The

mean percentages in WiFi channels 1, 6, and 11 are 87%,

86%, and 96%, respectively. The results show that adjacent

noisy channels are underutilized and there are many channel

opportunities for reliable transmissions.

B. Quantitative Correlation

The above results motivate us to explore those opportuni-

ties on adjacent channels of a busy channel to improve the

transmission reliability and spectrum efficiency.

During our experiments, we find that reliable transmission

opportunities always exist in the boundary channels that are

far from the central frequency of a WiFi channel, when four

ZigBee channels experience the same WiFi interference. For

example, in Fig. 2, when WiFi operates in WiFi channel 1, the

middle channels (Ch. 12 and 13) have poor qualities but the

boundary channels (Ch. 11 and 14) can still provide reliable

transmissions.

The above observation inspires us that such a phenomenon

may be caused by the non-uniform power spectrum of WiFi.

The power spectrum of WiFi signal [15] is not uniformly

distributed on the whole 20MHz, but follows the function,

y = sin(x)/x. Since the channel bandwidth of ZigBee is only

2MHz, four ZigBee channels will suffer different interference

strengths even under the same WiFi interference. Hence, the

lower interference strength in the boundary channels can have

better SINR to provide reliable transmission opportunities. To

validate our hypothesis, we collect SINR of Ch. 11-14 under

interference in WiFi channel 1 for half an hour and plot the

results in Fig. 4. We find the mean SINR of four channels

perfectly fits the function, y=−sin(x)/x, which is the negative

of the power spectrum distribution function.

By comparing the fitted function and the WiFi power

spectrum standard, we find that their zero points are at ±π and

±11. Moreover, the offset frequency of four ZigBee channels

to the center of overlapped WiFi channel, denoted as Δ f ,

are 3+ 5(i− 3) MHz, i ∈ {1,2,3,4}, where i is the left to

the right number of four channels overlapped with WiFi. The

SINR correlation among four channels satisfies the following

formula:
S j = ai jSi +(ai j −1)b, (2)

where Si and S j represent the mean quality in Ch. i and j,
and b is the interfering parameter, determined by interference

devices and transceiver distance, and ai j is the ratio of Ch. j
to Ch. i calculated by the standard power spectrum function,

which is expressed as

ai j =
−sin(πΔ f j/11)/(πΔ f j/11)

−sin(πΔ fi/11)/(πΔ fi/11)
. (3)

Then iteratively calculating correlations of all the 16 ZigBee

channels, we can obtain a proportional relationship between

all channels, denoted as A. Hence we can directly calculate

the SINR of an unprobed channel based on the model by the

SINR of two probed channels.

However, obtaining the correlation model in practice is

challenging. ZigBee nodes can only probe one channel at

once. Without simultaneously probed SINR results in multiple

channels, it is non-trivial to obtain the accurate quantitative

channel model. Different probing sequences can lead to totally

different and even contradictory results. Applying the model in

practice and utilizing those unexplored channel opportunities

still need to be elaborately designed.
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III. DESIGN

In this section, we present the design of CoHop that lever-

ages the quantitative model to reactively hop to an available

channel with minimum probing overhead when the current

channel becomes poor. We first present an overview of CoHop

and then introduce major components in detail.

A. Overview

CoHop is a receiver-oriented method like ARCH [11].

Namely, the communication channel is decided by a receiver,

and the sender transmits data accordingly. Initially, all the

nodes use the same common channel such as Ch. 26. To avoid

too much channel contention on the common channel, when

transmitting bursty data, the transceivers will hop channels on

demand, and return to the common channel after transmissions

to wait for the following transmissions for other links. Hence,

the major designs are on the CoHop receiver.

Fig. 5 shows an overview of CoHop that consists of three

major components: correlation establishment, channel selec-

tion, and channel utilization. Initially, each receiver establishes

a correlation model based on the measured channel qualities

in terms of SINR and the collected interference information

(Section III-B). Based on the obtained correlation model,

the receiver will select an available channel to communicate

with the sender when the current channel becomes poor. The

receiver continuously monitors the current channel quality and

switches channel when the quality is lower than a predefined

threshold. Once deciding to switch channel, the CoHop re-

ceiver will select a new good channel based on our channel

selection algorithm (Section III-C). To reduce the probing

overhead, we optimize the probing sequence by designing

a prediction-based probing method based on the quantitative

channel correlation model and the Pareto-based WiFi traffic

model. After finding a good channel, the receiver coordinates

with the sender for transmission consistency (Section III-D)

to continue transmission.

B. Correlation Establishment

To use the quantitative channel correlation model in prac-

tice, we should design a practical method to measure channel

qualities on different channels and obtain the model on ZigBee

devices with limited resources. Note that the off-the-shelf

hardware of ZigBee such as CC2420 can collect the strength

of noise and interference by probing the channel when there

is no ZigBee transmission and get ZigBee signal strength by

decoding ZigBee packets. We use a 4ms window to extract

the strength of WiFi interference from the RSS sequence.

Compared with the noise, the effective signal has a bursty

larger amplitude. Hence, we isolate each busy period by

changing the point detection algorithm [16] that locates the

abrupt changes in data. The RSS collected during the busy

period is our interested strength of noise and interference

which is used to calculate SINR. To distinguish the noise

and the busy period, we empirically set a threshold, rth,

as −85dBm. Therefore, the RSS sequence of Ch. i can be

segmented as

Ri = {r1, · · · ,rp,rp+1, · · · ,rp+q︸ ︷︷ ︸
>rth

, · · · ,rn}. (4)

The mean RSS of a busy segment is denoted as Ii = r. Then

the SINR of Ch. i can be obtained after getting the ZigBee

signal strength Pi, i.e. Si = Pi/Ii.

Then we iteratively measure the SINR on 16 channels, to

construct the correlation matrix, denoted as C, forming as

follows:

C=

⎡
⎢⎢⎢⎣

1 C11,12 C11,13 · · · C11,26

C12,11 1 C12,13 · · · C12,26

C13,11 C13,12 1 · · · C13,26

...
C26,11

...
C26,12

...
C26,13

1
...

· · · 1

⎤
⎥⎥⎥⎦ (5)

where Ci, j is the correlation coefficient between Ch. i and Ch.

j; “1” and “-1” indicate perfectly positive and negative corre-

lation, respectively. Obviously, this is a symmetric matrix, i.e.

Ci, j =C j,i. Through the correlation establishment component,

each node can establish a correlation model and obtain a set of

detected interference, I, on the basis of this for future channel

selection.

C. Channel Selection

Due to the dynamic interference, a good strategy is im-

portant for selecting an available channel when the current

channel quality degenerates to unusable, with the minimum

probing overhead.

1) Probing Sequence Optimization: To measure the channel

qualities influenced by the same WiFi interference, the probing

sequence must be elaborately designed. To obtain the channel

correlation or recognize the current WiFi influencing, CoHop

should get the information of multiple channels simultane-

ously. However, due to the channel asymmetry, a ZigBee

node can only detect one ZigBee channel at once. Hence, if

sequentially probing all the channels, we may gather wrong

information because of the time difference of probing between

channels. For example, when probing one channel during the

WiFi transmission and switching to an adjacent channel for

next probing, the probing may happen just in the gap of two
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WiFi transmissions, leading to the wrong judgment that these

two channels are not influenced by the same WiFi.

The misleading probing result happens when the probing

that intends to detect the same WiFi interference fails because

the WiFi transmissions are fast and dynamic. Hence, we pro-

pose a prediction-based probing sequence optimizing method

that predicts the WiFi traffic and detects the adjacent channel

when the next WiFi traffic is likely to transmit. In this way,

CoHop eliminates the impacts of probing time differences with

a high probability.

To predict the transmission timing of the next WiFi traffic,

we adopt the Pareto model, a widely used model to predict

WiFi traffic [17]. Thus, the length of a busy period can be

inferred by the node. The probability that the length of the

next busy period is greater than t, P(x > t), can be modeled

as:

P(x > t) =
{

(α
t )

β , t > α
1, others

(6)

where α and β are the model scale and shape respectively.

Specifically, α is the minimum busy period, and β is given by
λ

λ−α , where λ is the average length of busy periods. We focus

on the period that t > Tprob, where Tprob is the period required

for channel switching and probing. The channel switching time

is only hundreds of microseconds, which is almost negligible.

Tprob is set to 4ms in our current implementation to reliably

collect multiple SINR samples. As shown in Fig. 6, there are

three cases for the probing prediction:

i) The current channel will be busy during the following

Tprob period. The receiver then is going to probe an adjacent

channel with the same interference to get the latest SINR. For

example, in Fig. 6, when Ch. 12 becomes poor, Ch. 13 will be

probed because the predicted busy period is longer than Tprob.

ii) The current channel will be idle for a short time Twait ,

which is less than a threshold Tth but will become busy again

for more than Tprob. The CoHop receiver will wait for Twait
and then probe a channel suspected to be influenced by the

same WiFi. In our current implementation, Tth is set to 1ms.

For example, in case ii of Fig. 6, Ch. 14 is used after Ch. 11

because Ch. 12 suspected to be influenced by the same WiFi,

has been probed.

iii) The current channel will be idle for a long time, longer

than threshold Tth. Then the CoHop receiver will probe the

channel that is likely to have no correlation with the current

Algorithm 1: Interference Quantification

Input: Si, Si+1, Sth, Dth, fi, fi+1 and matrix A
Output: fc and S

1 b =
Si−ai,i+1Si+1

ai,i+1−1 ]

2 if Si > Si+1 and |Si −Si+1|> Dth then
3 fc= fi+7MHz;
4 Si+2 = ai,i+2Si +(ai,i+2 −1)b;
5 Si+3 = ai,i+3Si +(ai,i+3 −1)b;
6 return
7 S={Si,Si+1,Si+2,Si+3} and fc
8 else
9 if Si < Si+1 and |Si −Si+1|> Dth then

10 fc= fi−3MHz;
11 Si−1 = ai,i−1Si +(ai,i−1 −1)b;
12 Si−2 = ai,i−2Si +(ai,i−2 −1)b;
13 return
14 S={Si−2,Si−1,Si,Si+1} and fc
15 else
16 fc= fi+2MHz;
17 Si−1 = ai,i−1Si +(ai,i−1 −1)b;
18 Si+2 = ai,i+2Si +(ai,i+2 −1)b;
19 return
20 S={Si−1,Si,Si+1,Si+2} and fc
21 end
22 end

channel based on the history interference set, I, because

probing the correlated channels will only detect noise without

interference. As the Case iii shown in Fig. 6, Twait > Tth, then

CoHop decides to probe Ch. 15.

2) Interference Quantification: After detecting an adjacent

channel for the probing prediction, the qualities of other two

channels under the same interference can be calculated, based

on the known channel qualities and the central frequency of

current WiFi interference, fc, according to Eq. (2). However, in

practice, fc is unknown. Hence, to reduce the probing overhead

and find an available channel quickly, the key is to identify the

WiFi interference channel and then calculate unknown channel

quality from the known under the same interference.

Note that the power spectrum of WiFi is known as prior.

Hence, if the qualities of two adjacent channels Si and Si+1

are measured, then fc and S, can be obtained. The detailed

procedure is shown in Algorithm 1, where Dth is the SINR

difference between two adjacent channels and S is a vector

included the qualities of four channel interfered by the same

WiFi interference source. Then whether there is an available

channel can be determined by S. If not, a channel with

the minimum correlation to the current channel is selected

for probing by the correlation matrix, C. The reason for

not choosing a negative correlation channel is that the busy

periods of channels may cross, and once negative correlation

channels are selected, they are likely to be busy again at

the next period. If there is an available channel, the sender

and receiver will coordinate the transmitted channel for the

following transmissions.

3) Correlation Update: Under dynamic interference, the

correlation will be time-varying. For example, in Fig. 7(a),

SINR may vary with the Tx power changes of the same WiFi
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interference, incurring the changes of parameters in the model.

The correlation among multiple channels can also disappear

or occur when the WiFi devices leave or join the environment,

as Fig. 7(b) and Fig. 7(c) shown. Hence, CoHop integrates a

correlation update module to keep the correlation up-to-date.

In CoHop, we adopt a moving average method to deal with

the model parameter changes of cases in Fig. 7(a). Denote the

latest measured SINR of Ch. i as Sprob
i . The channel quality

of Ch. i, Si, will be updated to Ŝi, by Ŝi = ρSi +(1−ρ)Sprob
i ,

where ρ is a weighting parameter which is set as 0.4 in

our implementation to maximize the use of newly detected

information. For the leaving case, CoHop directly records the

new measure SINR in each channel independently. For the join

case, CoHop measures the SINR in each channel and fits the

model parameters to update the correlation matrix C. Besides,

the receiver will also determine the WiFi channel of the joined

interference and update the interference set I.
In some extreme cases, the interference set may vary

significantly. And the variation can lead to the correlation

invalid, resulting in an inaccuracy of channel selection and

packet loss. To avoid frequent and worthless channel hopping

in these cases, CoHop re-polls all channels after a series of

selection errors to establish the correlation again. We explore

the appropriate reestablishment opportunities in Section III-D.

D. Channel Utilization

After selecting the used channel, channel coordination be-

tween the sender and receiver will be carried out. And the

receiver will continuously monitor the channel to trigger next

channel hopping or correlation reestablishment.

1) Coordination: CoHop uses Ch. 26 as the common

channel because it is less overlapped with commonly used

WiFi channels. Once the receiver decides channel hopping,

it will add the next used channel information in the ACK

message for the data packet. Then the sender will learn the

channel used in the next slot. The sender and the receiver will

hop to the selected channel in the next transmission slot to

Without 1Mbps 15Mbps 30Mbps

Fig. 9. Channel hopping behaviors under varying interference intensity.

continue the transmissions. Fig. 8 shows a simple example of

channel coordination. The red rectangular boxes represent the

channel used during transmission. When the current channel i
becomes poor after losing packet D2, the receiver will select

the next channel, i.e. Ch. j, and then send this information to

the sender in the ACK of next packet, D3. In this way, the

sender and receiver keep consistent on the used channel.

2) Monitoring: During transmission, the receiver continu-

ously monitors the transmission reliability in terms of PRR.

Here we use PRR as an indicator to trigger channel hopping.

When PRR is lower than 90%, we regard the current channel

becomes poor. CoHop also monitors the continuous usage of

poor channels. If the poor channels with PRR less than 90%

are continuously selected four times, CoHop will re-establish

the correlation model.

IV. EVALUATION

We implement a prototype of CoHop on TelosB motes

with TinyOS 2.1.2 and evaluate its performance from various

aspects.

A. Experiment Setup

We first evaluate the effectiveness of CoHop’s components.

To get the ground-truth of the channel quality to validate our

correlation establishment and channel selection algorithms, we

use 16 TelosB motes working on the 16 ZigBee channels to

simultaneously collect the RSS samples for half an hour in a

conference room. A Tx deployed sends packets in Ch. 26 to

multiple receivers for making them work simultaneously. The

receivers receiving control packets hop to the corresponding

channel to collect data immediately. Then we use the collected

RSS traces to fairly evaluate different methods. Without losing

generality, we set the Tx power to -10dBm to match the actual

work environment. The distance between the sender and the



Fig. 10. The interference identification accuracy for the WiFi channel.

receivers is 3m. The RSS sampling rate on receivers is 15KHz.

To obtain different patterns of WiFi interference, three pairs

of laptops in WiFi channels 1, 6 and 11 are used to generate

a stream of UDP segments using the iperf tool [18] with

the transmission rate of 1Mbps, 15Mbps, and 30Mbps. We

then evaluate CoHop through online experiments in real-world

environments and conduct experiments in controlled and real

situations. The interference generation is using the iperf tool

in controlled experiments. For real experiments, we directly

observe the reliability of multiple methods in real-world envi-

ronments, including office, classroom, and dormitory. Then we

study the overhead of CoHop in terms of energy efficiency in

controlled environments. For comparison, we also implement

the random method and ARCH [11].

B. Benchmarks

We start with four benchmark experiments to validate the

effectiveness of CoHop’s major components.

1) Channel Selection Accuracy: We evaluate the selection

accuracy of CoHop by observing the channel hopping be-

haviors. The top display of Fig. 9 shows the varying WiFi

interference rates, and the following shows a comparison be-

tween the corresponding channel hopping behaviors of various

algorithms. It is noteworthy that we don’t care about Ch. 25

and 26 which have less overlap with commonly used WiFi

channels. As a baseline for comparison, we also compare the

optimal algorithm which always chooses the maximum SINR

channel. The optimal algorithm is to process data cyclically to

select the optimal channel. Essentially, the optimal algorithm

is the upper limit of performance and cannot be implemented

online, while in fact, as long as SINR is more than 6dB, it is

considered that the channel is equal optimal.

As shown in Fig. 9, we set the initial channel to 13, and

under the interference-free environment (period 1-400ms), all

methods continue to use Ch. 13 for data transmission. When

the WiFi interference rate is turned to 1Mbps, the quality of

Ch. 13 decreases sharply. CoHop can quickly adapt to this

change by switching to Ch. 15 which exhibits higher SINR.

However, ARCH algorithm first hops to Ch. 23 whose quality

is poor, according to the principle of far channel priority. This

causes the channel hopping to be performed again. The similar

behaviors are observed when the WiFi interference rates are

15Mbps and 30Mbps. In addition, CoHop’s performance is

better than the random algorithm. Especially at 30Mbps, the

random selection algorithm does channel hopping frequently.

Obviously, the channel hopping frequency of CoHop is far

less than other methods. The reason behind this result is that
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Fig. 11. Impact of the prediction-based probing method.
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Fig. 12. Impact of the correlation update frequency.

CoHop makes a selection based on the quantitative correlation,

while ARCH algorithm relies on binary correlation and the

random scheme does not consider any correlation among

channels.

2) Interference Identification Accuracy: In CoHop, the

premise of interference quantization is to correctly identify the

interference channel. Fig. 10 shows the effectiveness of inter-

ference identification for the WiFi channel. CoHop achieves a

max identification accuracy of 100% for most WiFi channel

and average interference identification accuracies of 89.1%.

The above results show that the interference identification

method can distinguish different WiFi channels with high

accuracy.

3) Prediction-based Probing Effectiveness: We further ex-

plore the effectiveness of the prediction-based probing method

under different interference rates. Fig. 11 (a) depicts PRR with

and without the prediction-based probing method. The method

with probing achieves high reliability with an average value of

93%, while it drops to 85% without probing at 30Mbps. The

significant enhancement is also clearly shown in Fig. 11 (b).

For any interference intensity, the number of used channels is

significantly reduced after using the prediction-based probing

method.

4) Impact of Correlation Update Frequency: Due to WiFi

interference is time-varying, the correlation model may be

invalid over time, resulting in repeated channel hopping. To

avoid frequent and worthless channel hopping, CoHop re-

probes all channels after a series of error hops. To find the

appropriate re-establishment opportunities, we further explore

the impacts of the number of consecutive errors, Nerror, before

update correlation by polling. As shown in Fig. 12 (a), when

Nerror is 4, PRR of three cases is 97%, 94%, and 92%

respectively at 1Mbps. Nevertheless, PRR drops down to 80%

when re-probing is used after 10 errors at 30Mbps. This means

that frequent probing can improve reliability. For balancing
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Fig. 13. The online performance in real scenarios.
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Fig. 14. The online performance under controlled environments.

overhead and reliability, we plot the polling probing round

required for three cases in Fig. 12 (b). By comparing the two

figures, we find that it is reasonable to set Nerror to 4, which

can provide high reliability and less polling times.

C. Online Performance

We present the overall online performance of CoHop in

real-world experiments, in terms of PRR, the number of used

channels, and the one-shot success ratio. One-shot success

ratio indicates that the available channel can be selected by

one channel hopping. The experiment results are shown in Fig.

13. CoHop keeps high reliability in three real-world scenarios.

Even in the high interference dormitory, PRR of CoHop can

reach 77%. The number of used channels of CoHop is 16.5,

while the other two methods exceed 35. Similarly, CoHop

also achieves a higher one-shot success ratio in three scenarios

compared with the other two methods. This is because CoHop

leverages the quantitative correlation to select the next channel.

Moreover, we explore the influence of interference intensity

in real-world environments. The results are shown in Fig. 14.

While PRR of three methods have small differences at 1 Mbps,

CoHop’s PRR keeps 78% at 30Mbps, which increases by

80% compared with the others. The number of used channels

of CoHop is 19 at 30Mbps, but the others are higher than

40. For the one-shot success ratio, CoHop is also superior to

others. The results above suggest CoHop can still provide high

network reliability in real-world experiments.

D. Energy Efficiency

We measure the energy efficiency of CoHop directly to

demonstrate power consumption. Energy efficiency refers to

the total number of delivered data per energy consumption

unit. According to the datasheet of CC2420 [19], the current

consumption of receive and transmit mode of telosb are

18.8mA and 11mA respectively. As shown in Fig. 15, the

energy efficiency decreases with increasing WiFi traffic, and

CoHop’s performance is twice as efficient as the others at

30Mbps. This is because the increasing poor channel selection

probability results in low reception ratio and low energy

efficiency at strong interference, while for CoHop, the energy

efficiency keeps high even.

V. RELATED WORK

We review related works that enhance communication re-

liability for low-power networks in three categories: passive

avoidance, interference awareness, and positive collaboration.

The normal mechanisms of passive avoidance are fully

exploring predictable transmission gaps in time [17], [20] or

frequency [8]–[11]. WISE [17] resists CTI by probing WiFi

white space to resize the data frame for ZigBee. TIIM [20]

characterizes the CTI pattern by adopting machine learning

techniques. The above methods are to avoid CTI in time,

while our main concern is spectrum isolation by hopping

to interference-free channels. Muzi [8] chooses an available

channel by polling all. The blacklist technology used in [9],

[10] avoids hopping to interfered channels by blacklisting

bad channels. ARCH [11] holds on that the channel with a

large distance away from the currently-used channel should

be selected. While the methods above are shown to be highly

effective, channel correlation is evaluated in binary instead

of quantification, which do not make full use of boundary-

channels. In this paper, we propose a channel hopping method

based on quantitative correlation to uniquely investigate the

available opportunities of boundary-channels to combat CTI.

Different from passive avoidance, the interference tolerance

methods aim at resisting the presence of interference by

improving system robustness [21]–[23]. For instance, ZiSense

[21] leverages interference feature extraction to avoid unneces-

sary wake-ups. Smoggy-Link [22] maintains a model to obtain

fine-grained spatiotemporal link information for adaptive link

selection. This research direction is orthogonal to channel
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Fig. 15. The energy efficiency in controlled environments.

hoping we’re focusing on because the signal processing can

be integrated into CoHop to improve system robustness.

There are also plenty of positive coordination approaches

that fight against interference by cooperating with WiFi

through auxiliary mechanism [24]–[26], rather than simply

promoting themselves [27], [28]. For example, Weeble [24]

solves the coexistence problem by adaptive preamble support.

G-Bee [25] safeguards the packets from WiFi interference by

placing the ZigBee packets on the guard band of ongoing WiFi

traffic. ECC [26] uses WiFi CTS to generate the white space

and explicitly notify ZigBee via CTC to use it immediately.

However, the above methods bring about a lot of overhead than

CoHop, due to the coordination of heterogeneous devices.

VI. CONCLUSION

This paper presents a careful analysis of channel interfer-

ence characteristic of ZigBee by the WiFi network at 2.4 GHz

ISM band. Based on the observation that correlated channels

affected by the same CTI source do not necessarily have the

same channel quality and may even have the opposite channel

state, we propose CoHop, a novel method of channel hopping

based on quantitative correlation. CoHop adaptively selects an

available channel based on quantitative correlation with low

overhead and high precision and the channel selection module

is based on PCC and prediction-based probing algorithm

which can optimize probing sequence. Moreover, our model

can be implemented directly on off-the-shelf devices. Lastly,

compared with existing channel selection algorithms, CoHop

can increase PRR by 80%, which simultaneously enhances

channel hopping precision.
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